Parasite genomic surveillance

MalariaGEN provides researchers and control programmes in malaria-endemic countries with access to DNA sequencing technologies and tools for genomic analysis. We have released genome variation data on more than 16,000 malaria parasite samples from 30 countries. This genomic data resource has been built by MalariaGEN partners from around the world, who are working together to build high-quality data resources for malaria research and disease control.

Why we need genomic surveillance of Plasmodium species

The Plasmodium parasites that cause malaria have a remarkable talent for survival. Through small genetic changes, they can evade the human immune system, develop resistance to antimalarial drugs, and adapt to changes in the Anopheles mosquitoes that transmit the parasites.

Genomic surveillance of Plasmodium is a powerful tool in tracking the evolution of the drug resistant variants that challenge malaria control programmes. Identifying genetic variations is helping scientists and health professionals answer crucial questions about the mechanisms of drug-resistance, whether it is newly emerged, or if it is spreading from other areas, and which locations are at risk from drug resistant strains.

An open genetic data resource on Plasmodium species

MalariaGEN is working to improve the sustainability and efficacy of malaria control measures by providing the means for tracking genetic variation and the emergence of drug resistance. The open Plasmodium genetic data resource is the world's largest data set of curated genomic data on malaria parasite evolution and drug resistance. It provides the reference data needed in the search for new drugs and vaccines, and to guide malaria control interventions.

Genetic surveillance through Amplicon

Amplicon sequencing is the key tool within the SpotMalaria platform. It offers partners a simple and fast approach for analysing genetic variation in specific genomic regions associated with drug resistance. The GenRe Project has demonstrated the value of amplicon sequencing, which it uses to produce genetic barcodes for each sample. Barcodes can be analysed and compared to detect emerging variants or imported parasites in different locations. The NIHR Global Health Research Group is creating genomic surveillance hubs in Ghana and The Gambia, which will use amplicon sequencing to inform public health decision-making in West Africa.

Why work with us

One of MalariaGEN's core principles is to provide clear attribution and recognition of all the groups that have contributed to a data resource. The Plasmodium resource lists each sample against the partner study that it belongs to, with a description of the scientific aims of the study and the local investigators that led the work. The power of this this collaborative approach has resulted in MalariaGEN