Genetic surveillance in the Greater Mekong Subregion to support malaria control and elimination

Imputation of genotypes for markers of drug resistance

V1.0, February 2020

Change History

Version	Date	Notes
1.0	28 February 2020	Details SpotMalaria V2.1 and previous versions.
		Released with Jacob CG et al. (2020)

Introduction

This document defines a set of rules used by the GenRe-Mekong project to infer missing genotypes in drug resistance markers, based on genotypes at other sites that are significantly associated, to improve GenRe-Mekong's power to predict resistant phenotypes. The imputation rules presented here are specifically focussed on haplotypes in genes *crt*, *dhfr* and *dhps*.

Statistical associations were identified by analyzing whole-genome sequencing (WGS) data from over 7,000 global parasite samples in the MalariaGEN Plasmodium falciparum Community Project V6.0 (Pf6, see https://www.malariagen.net/resource/26). To test the predictive association of an allele with another allele at a different position, we created confusion matrices and translated highly significant associations into imputation rules. Each association chosen for a rule was supported by p < 0.01 in a Fisher's exact test, unless otherwise stated. No association with p > 0.05 was used for rules.

Haplotype counts were estimated in different geographical regions, as follows: WAF = West Africa; CAF = Central Africa; EAF = East Africa; SAS = South Asia; WSEA = West South-East Asia; ESEA = East South-East Asia; OCE = Oceania; SAM = South America. In cases where allele associations were only observed in specific geographical regions, we defined geographically-restricted imputation rules.

Rules are applied as follows:

• Each rule has a *match pattern* (a specific set of alleles at one or more positions) that triggers the rule if it is fully matched by the sample haplotype call; and an *output operation* that specifies

- alleles to be assigned at specific positions if the rule is triggered, and if these positions are missing in the sample haplotype call.
- All rules are executed on every sample, in the sequence given in this document. Universal rules
 are applied before region-specific rules. Triggering a matched rule does not terminate the rule
 sequence.
- The match pattern is tested against the original sample haplotype call, ignoring any alleles imputed by previously executed rules
- The output operation only imputes missing genotypes, and has no effect on positions that have a valid genotype, including those that have been assigned a genotype by a previously executed rule.

In the first part of this document, we document the imputation rules gene by gene. In the second section, we detail the evidence for the allele associations underpinning each rule.

Prediction Rules

PF3D7_0709000 (pfcrt)

Haplotypes

Plasmodium falciparum chloroquine transporter (*PfCRT*), encoded by *pfcrt* gene, is a transmembrane protein located at digestive vacuole membrane. It is implicated in resistance to chloroquine, amongst others. The *core haplotype* of interest for consists of the amino acid residues 72-76. The K76T mutation is considered the most important marker of chloroquine resistance.

Codon	Wild-type Allele	Alternative Alleles
72	С	S, Y
73	V	-
74	M	I
75	N	D, E
76	K	Т

The following table shows the distribution of *PfCRT* core haplotypes in different geographical subcontinents in Pf6:

Haplotype	SAM	EAF	CAF	WAF	SAS	ESEA	WSEA	OCE	Total
CVIDT	0	0	0	0	0	237	0	0	237
CVIET	2	160	314	975	157	1493	1285	0	4386
CVMET	61	0	0	0	0	0	0	0	61
CVMNK	1	711	165	1275	8	43	9	2	2214
CVMNT	21	0	0	0	0	0	0	0	21
SVMNT	12	0	0	0	0	0	0	198	210
YVIET	0	0	0	0	0	4	0	0	4
Total	97	871	479	2250	165	1777	1294	200	7133

Universal Imputation Rules

Geographical Region	Match	Imputed	Test	Operation
All	S	S-MNT	crt_72 == S	crt_74 <- M; crt_75 <- N; crt_76 <- T
All	I	I-T	crt_74 == I	crt_76 <- T
All	D-	C-IDT	crt_75 == D	crt_72 <- C; crt_74 <- I; crt_76 <- T
All	E-	ET	crt_75 == E	crt_76 <- T
All	N-	MN -	crt_75 == N	crt_74 <- M
All	K	C-MNK	crt_76 == K	crt_72 <- C; crt_74 <- M; crt_75 <- N

Geographical Region	Match	Imputed	Test	Operation	
All		-V	<none></none>	crt_73 <- V	(invariant)

Geography-Specific Imputation Rules

Geographical Region	Match	Imputed	Test	Operation
WAF, CAF, EAF, SAS	I	C-IET	crt_74 == I	crt_72 <- C; crt_75 <-E; crt_76 <- T
WSEA, ESEA	E-	IET	crt_75 == E	crt_74 <- I; crt_76 <- T
WAF, CAF, EAF, SAS	E-	C-IET	crt_75 == E	crt_72 <- C; crt_74 <- I; crt_76 <- T
WAF, CAF, EAF, SAS, WSEA, ESEA	N-	C-MNK	crt_75 == N	crt_72 <- C; crt_74 <- M; crt_76 <- K
OCE	M	MN-	crt_74 == M	crt_75 <- N
WAF, CAF, EAF, SAS, WSEA, ESEA	M	C-MNK	crt_74 == M	crt_72 <- C; crt_75 <- N; crt_76 <- K
WSEA, ESEA	T	I-T	crt_76 == T	crt_74 <- I
WAF, CAF, EAF, SAS	T	C-IET	crt_76 == T	crt_72 <- C; crt_74 <- I; crt_75 <- E

PF3D7_0417200 (pfdhfr)

Haplotypes

In Plasmodium falciparum, the *pfdhfr* gene encodes an enzyme, dihydrofolate reductase, which is required for tetrahydrofolate synthesis. Pyrimethamine, an antimalarial drug, interferes with the regeneration of tetrahydrofolic acid from dihydrofolate by competitively inhibiting *pfdhfr*. Parasites with *pfdhfr* mutations may be resistant to pyrimethamine. The core haplotype of interest for consists of the amino acid residues 51, 59, 108, 164. The K76T mutation is considered the most important marker of chloroquine resistance. The *pfdhfr* S108N mutation is an important predictor for pyrimethamine resistance in Plasmodium falciparum, while S108T mutation has been associated with resistance to chlorcycloguanil drugs.

Codon	Wild-type	Mutation
51	N	I
59	С	R
108	S	N,T
164	I	L

The following table shows the distribution of *pfdhfr* haplotypes in different geographical subcontinents in Pf6, indicating that occurrences of 51I and 59R single mutations (ICSI, NRSI) and double mutation of 51I/59R (IRSI) are rare. In addition, the 164L mutation rarely occurs in Africa, but it is more common in Southeast Asia.

Haplotype	SAM	EAF	CAF	WAF	SAS	ESEA	WSEA	OCE	TOTAL
NCTI	1	0	0	0	0	2	0	0	3
ICNL	4	1	0	0	0	0	0	0	5
NCNI	43	0	2	6	0	1	1	1	54
NRNL	0	0	0	0	15	3	81	0	99
ICNI	24	39	56	16	1	0	0	0	136
NCSI (wild- type)	21	13	7	315	3	8	0	1	368
NRNI	0	30	3	112	53	95	72	211	576
IRNL	0	3	0	1	29	788	933	0	1754
IRNI	1	780	434	1598	31	835	140	0	3819
TOTAL	94	866	502	2048	132	1732	1227	213	6814

Universal Imputation Rules

Geographical Region	Match	Imputed	Test	Operation
Any	I	I-N-	dhfr_51 == I	dhfr_108 <- N
Any	-R	-RN-	dhfr_59 == R	dhfr_108 <- N
Any	L	NL	dhfr_164 == L	dhfr_108 <- N
Any	S-	NCSI	dhfr_108 == S	dhfr_51 <- N; dhfr_59 <- C; dhfr_164 <- I
Any	T-	NCTI	dhfr_108 == T	dhfr_51 <- N; dhfr_59 <- C; dhfr_164 <- I

Geography-Specific Imputation Rules

Geographical Region	Match	Imputed	Test	Operation
WSEA, ESEA	-C	NC	dhfr_59 == C	dhfr_51 <- N
WSEA, ESEA	I	IRN-	dhfr_51 == I	dhfr_59 <- R; dhfr_108 <- N
SAS, WSEA, ESEA	-C	-C-I	dhfr_59 == C	dhfr_164 <- I
SAS, WSEA, ESEA	L	-RNL	dhfr_164 == L	dhfr_59 <- R; dhfr_108 <- N

PF3D7_0810800 (pfdhps)

Haplotypes

The Plasmodium falciparum dihyropteroate synthase (*pfdhps*) gene encodes an important protein in the folate biosynthesis pathway of the parasite. Polymorphisms of *pfdhps* have been associated with reduced susceptibility to antifolate treatment, e.g. sulfadoxine and sulfadoxine/pyrimethamine.

Codon	Wild-type	Mutation
436	S	A, C, F, H, Y
437	Α	G
540	K	E, I, K, N, Y
581	Α	G
613	Α	S, T

The following table shows the distribution of PfDHPS haplotypes for different geographical regions in Pf6:

Haplotype	SAM	EAF	CAF	WAF	SAS	ESEA	WSEA	OCE	TOTAL
AAKAA	0	13	9	384	0	16	0	0	422
AAKAS	0	0	0	2	0	0	0	0	2
AAKGS	0	0	0	1	0	0	0	0	1
AGEAA	0	1	0	0	71	342	283	0	697
AGEAT	0	0	0	0	0	2	0	0	2
AGEGA	0	0	0	0	0	1	0	0	1
AGIAA	0	0	0	0	0	0	1	0	1
AGKAA	0	0	24	367	0	135	0	0	526
AGKAS	0	0	1	63	0	0	0	0	64
AGKAT	0	0	0	0	0	3	0	0	3
AGKGS	0	0	4	43	0	0	0	0	47
AGNAA	0	0	0	0	0	0	18	0	18
CAKAA	0	0	0	5	0	1	0	3	9
FAKAA	0	0	0	0	0	3	0	0	3
FAKAS	0	1	0	8	0	1	0	0	10
FGEAS	0	0	0	0	0	37	0	0	37
FGEAT	0	0	0	0	0	2	4	0	6
FGKAS	1	2	0	0	0	1	0	0	4
FGKAT	0	3	0	0	0	0	0	0	3
HAKAA	0	1	0	0	0	0	0	0	1
HGEAA	0	7	0	0	0	0	0	8	15
SAKAA (wild-type)	45	57	14	120	13	143	3	79	474
SGEAA	0	634	25	12	15	85	21	96	888
SGEGA	4	68	9	1	13	49	752	0	896
SGKAA	42	12	398	755	3	113	2	11	1336
SGKAS	0	0	0	2	0	0	0	0	2
SGKGA	5	4	0	1	5	18	22	0	55
SGNGA	0	0	0	0	0	633	72	0	705
SGYAA	0	0	0	0	0	2	0	0	2
YAKAS	0	0	0	7	0	0	0	0	7
Total	97	803	484	1771	120	1587	1178	197	6237

Universal Imputation Rules

Geographical Region	Match	Imputed	Test	Operation
Any	F	FA-	dhps_436 == F	dhps_581 <- A
Any	H	HA-	dhps_436 == H	dhps_581 <- A
Any	C	CAKA-	dhps_436 == C	dhps_437 <- A; dhps_540 <- K; dhps_581 <- A
Any	Y	YAKA-	dhps_436 == Y	dhps_437 <- A; dhps_540 <- K; dhps_581 <- A
Any	-A	-AKA-	dhps_437 == A	dhps_540 <- K; dhps_581 <- A
Any	N	-GN-A	dhps_540 == N	dhps_437 <- G; dhps_613 <- A
Any	E	-GE	dhps_540 == E	dhps_437 <- G
Any	G-	-G-G-	dhps_581 == G	dhps_437 <- G

Geography-Specific Imputation Rules

Geographical Region	Match	Imputed	Test	Operation
EAF, CAF, WAF	F	F-KA-	dhps_436 == F	dhps_540 <- K; dhps_581 <- A
EAF, CAF, WAF	E	-GE-A	dhps_540 == E	dhps_437 <- G; dhps_613 <- A
EAF, CAF, WAF	S	K-S	dhps_613 == S	dhps_540 <- K
EAF, CAF, WAF	T	K-T	dhps_613 == T	dhps_540 <- K
SAS, WSEA, ESEA	S	SA	dhps_436 == S	dhps_613 <- A
SAS, WSEA, ESEA	G-	-G-GA	dhps_581 == G	dhps_437 <- G; dhps_613 <- A
SAS, WSEA, ESEA	S	FAS	dhps_613 == S	dhps_436 <- F; dhps_581 <- A
SAS, WSEA, ESEA	T	AT	dhps_613 == T	dhps_581 <- A

Statistical Evidence for Imputation Rules

PF3D7_0709000 (pfcrt)

Codons 72 and 74

There is a significant association between PfCRT codons 72 and 74 in parasites from all regions:

All regions	C72	72S	72Y	Total
741	4838	0	4	4842
M74	2362	211	0	2573
Total	7200	211	4	7415

suggesting the following:

Rule: 72S predicts M74

Also:

• 72S was found only in South America and Oceania, and

72Y mutation only occurred in Southeast Asia

suggesting additional rules:

Rule: M74 predicts C72 except in SAM and OCE

Rule: 74I predicts C72 except in SAM, OCE, WSEA and ESEA

Codons 72 and 75

There is a significant association between PfCRT codons 72 and 75 in the parasites from all regions:

All regions	C72	72S	72Y	Total
75D	237	0	0	237
75E	4662	0	4	4666
N75	2301	211	0	2512
Total	7200	211	4	7415

suggesting the following:

Rule: 75D predicts C72 Rule: 72S predicts N75

Also:

• 72S was found only in South America and Oceania, and

72Y mutation only occurred in Southeast Asia

suggesting additional rules:

Rule: N75 predicts C72 except in SAM and OCE

Rule: 75E predicts C72 except in SAM, OCE, WSEA and ESEA

Codons 72 and 76

There is significant association between PfCRT codons 72 and 76 in the parasites from all regions:

All regions	C72	72S	72Y	Total
К76	2280	0	0	2280
76T	4920	211	4	5135
Total	7200	211	4	7415

suggesting the following:

Rule: K76 predicts C72 Rule: 72S predicts 76T

Also:

• 72S was found only in South America and Oceania, and

• 72Y mutation only occurred in Southeast Asia

suggesting additional rules:

Rule: 76T predicts C72 except in SAM, OCE, WSEA and ESEA

Codons 74 and 75

There is a significant association between PfCRT codons 74 and 75 in the parasites from all regions:

All regions	741	M74	Total
75D	237	0	237
75E	4605	61	4666
N75	0	2512	2512
Total	4842	2573	7415

suggesting the following:

Rule: 75D predicts 74I Rule: N75 predicts M74

When disregarding the parasites from South America (SAM):

All except South America	741	M74	Total
75D	237	0	237
75E	4388	0	4388
N75	0	2411	2411
Total	4625	2411	7036

suggesting the following:

Rule: 75E predicts 74I	except in SAM	
Rule: M74 predicts N75	except in SAM	

Also:

• 75D was found only in Southeast Asia

suggesting the following:

Rule: 74I predicts 75E except in SAM, WSEA and ESEA

Codons 74 and 76

There is a significant association between PfCRT codons 74 and 76 in the parasites from all regions:

All regions	741	M74	Total
К76	0	2280	2280
76T	4842	293	5135
Total	4842	2573	7415

suggesting the following:

Rule: K76 predicts M74	(Fisher's exact test: P < 0.01)
Rule: 74I predicts 76T	(Fisher's exact test: P < 0.01)

When disregarding the parasites from South America and Oceania (SAM and OCE):

All regions except SAM, OCE	741	M74	Total
K76	0	2211	2211
76T	4625	0	4625
Total	4625	2211	6836

suggesting the following:

Rule: M74 predicts K76	except in SAM, OCE	
Rule: 76T predicts 74I	except in SAM, OCE	

Codons 75 and 76

There is a significant association between PfCRT codons 75 and 76 in the parasites from all regions:

All regions	75D	75E	N75	Total
К76	0	0	2280	2280
76T	237	4666	232	5135
Total	237	4666	2512	7415

suggesting the following:

Rule: K76 predicts N75 Rule: 75D predicts 76T Rule: 75E predicts 76T

Also:

Rule: N75 predicts K76 except in SAM, OCE

Association between K76T and other crt markers for chloroquine resistance

K76T mutation has been used as a marker for chloroquine resistance; however, single *pfcrt* K76T mutation is not sufficient to cause altered chloroquine susceptibility. The data from MalariaGEN Plasmodium falciparum Community Project V6.0 was assessed for the association between K76T mutation and other markers for chloroquine resistance, including residues 75, 220 and 326. We can infer that K76T is a predictor for these additional chloroquine-resistant markers.

	К76	76T	Total
N75+A220+N326	2056	0	2056
N75+220S+N326	3	0	3
75D+220S+N326	0	210	210
75E+A220+N326	0	2	2
75E+220S+N326	0	1658	1658
75E+220S+326S	0	2060	2060
75N+220S+326D	0	222	222
Total	2059	4152	6211

PF3D7_0417200 (pfdhfr)

To impute missing codons in *pfdhfr*, the associations between amino acids at position 51, 59, 108 and 164 were assessed to generate the imputation rules using the data from Pf6. These generally support evidence from studies of the evolutionary process of *pfdhfr* mutation, proposing that 164L mutation arose after C59R+S108N and N51I+C59R+S108N mutations [1, 2].

Codons 51 and 108

There is a significant association between *pfdhfr* codons 51 and 108 in the parasites from all regions:

All regions	N51	51 I	Total
108N	746	6283	7029
S108	383	0	383
108T	4	0	4
Total	1133	6283	7416

suggesting the following:

Rule: 511 predicts 108N Rule: S108 predicts N51 Rule: 108T predicts N51

Codons 59 and 108

There is a significant association between *pfdhfr* codons 59 and 108 in the parasites from all regions:

All regions	C59	59R	Total
108N	204	6953	7157
S108	378	0	378
108T	3	0	3
Total	585	6953	7538

suggesting the following:

Rule: 59R predicts 108N Rule: S108 predicts C59 Rule: 108T predicts C59

Codons 108 and 164

There is a significant association between *pfdhfr* codons 108 and 164 in the parasites from all regions:

All regions	I164	164L	Total
108N	5270	1911	7181
S108	391	0	391
108T	4	0	4
Total	5665	1911	7576

suggesting the following:

Rule: 164L predicts 108N Rule: S108 predicts I164 Rule: 108T predicts I164

Codons 51 and 59

There is a significant association between *pfdhfr* codons 108 and 164 but insufficient for an imputation rule that covers the parasites from all regions:

All regions	511	N51	Total
C59	148	455	603
59R	6031	696	6727
Total	6179	1151	7330

However, when considering only parasites in Southeast Asia (ESEA and WSEA):

Southeast Asia	51 I	N51	Total
C59	0	12	12
59R	2840	261	3101
Total	2840	273	3113

suggesting the following:

Codons 59 and 164

There is a significant association between *pfdhfr* codons 59 and 164 but insufficient for an imputation rule that covers the parasites from all regions:

All regions	C59	59R	Total
I164	612	4890	5502
164L	5	1899	1904
Total	617	6789	7406

However, when considering only parasites in Asia (SAS, ESEA and WSEA):

Asia	C59	59R	Total
1164	16	1288	1304
164L	0	1895	1895
Total	16	3183	3199

suggesting the following:

Rule: C59 predicts I164 in SAS, WSEA, ESEA

Rule: 164L predicts 59R in SAS, WSEA, ESEA

References

1. Sirawaraporn W, Sathitkul T, Sirawaraporn R, Yuthavong Y, Santi DV. <u>Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase</u>. Proc Natl Acad Sci U S A. 1997;94(4):1124-9.

2. Lozovsky ER, Chookajorn T, Brown KM, Imwong M, Shaw PJ, Kamchonwongpaisan S, et al. <u>Stepwise acquisition of pyrimethamine resistance in the malaria parasite</u>. Proc Natl Acad Sci U S A. 2009;106(29):12025-30.

PF3D7_0810800 (pfdhps)

Codons 436 and 581

There is a significant association between *pfdhps* codons 436 and 581 in the parasites from all regions:

All regions	A581	581G	Total
436A	1954	58	2012
436C	9	0	9
436F	63	0	63
436H	17	0	17
S436	3114	1716	4830
436Y	9	0	9
Total	5166	1774	6940

suggesting the following:

Rule: 436F predicts A581 Rule: 436H predicts A581

Fisher's exact test: p < 0.05

Codons 437 and 581

There is a significant association between *pfdhps* codons 437 and 581 in the parasites from all regions:

All regions	A581	581G	Total
A437	1032	1	1033
437G	4370	1780	6150
Total	5402	1781	7183

suggesting the following:

Rule: A437 predicts A581 Rule: 581G predicts 437G

Codons 613 and 581

There is no association with p < 0.05 between *pfdhps* codons 613 and 581 in the parasites from all regions:

All regions	A581	581G	Total
A613	5682	1746	7428
613S	147	57	204
613T	14	0	14
Total	5843	1803	7646

However, when considering only parasites in Asia (SAS, ESEA and WSEA):

All regions	A581	581G	Total
A613	1473	1646	3119
613S	40	0	40
613T	11	0	11
Total	1524	1646	3170

suggesting the following:

Rule: 613S predicts A581	in SAS, WSEA, ESEA
Rule: 613T predicts A581	in SAS, WSEA, ESEA
Rule: 581G predicts A613	in SAS, WSEA, ESEA

Codons 540 and 613

There is a significant association between 540N mutation and A613 in parasites from all regions:

All regions	A613	613S	613T	Total
540E	2739	40	8	2787
5401	1	0	0	1
K540	3809	169	6	3984
540N	751	0	0	751
540Y	2	0	0	2
Total	7302	209	14	7525

suggesting the following:

Rule: 540N predicts A613

When only considering African parasites data (subcontinent codes: WAF, CAF and EAF):

Africa	A613	613 S	613T	Total
540E	835	0	0	835
K540	2789	140	3	2932
Total	3624	140	3	3767

suggesting the following:

Rule: 540E predicts A613	in WAF, CAF and EAF
Rule: 613S predicts K540	in WAF, CAF and EAF
Rule: 613T predicts K540	in WAF, CAF and EAF

Codons 436 and 613

The data showed significant association only when considering Asian parasites (SAS, ESEA, WSEA):

Asia	A613	613S	613T	Total
436A	920	0	5	925
436C	1	0	0	1
436F	3	42	6	51
S436	2114	0	0	2114
Total	3038	42	11	3091

suggesting the following:

Rule: S436 predicts A613	in SAS, WSEA, ESEA
Rule: 613S predicts 436F	in SAS, WSEA, ESEA

Codons 436 and 540

There are significant associations between K540 and 436C mutation and between K540 and 436Y mutation in the parasites from all regions:

All regions	540E	540I	K540	540N	540Y	Total
436A	717	1	1270	18	0	2006
436C	0	0	9	0	0	9
436F	45	0	20	0	0	65
436H	16	0	1	0	0	17
S436	1864	0	2155	720	2	4741
436Y	0	0	9	0	0	9
Total	2642	1	3464	738	2	6847

suggesting the following:

Rule: 436C predicts K540 Rule: 436Y predicts K540 When only considering African parasites data (subcontinent codes: WAF, CAF and EAF):

Africa	540E	K540	Total
436A	1	1033	1034
436C	0	5	5
436F	0	14	14
436H	7	1	8
S436	802	1410	2212
436Y	0	9	9
Total	810	2472	3282

suggesting the following:

Rule: 436F predicts K540 in WAF, CAF and EAF

Codons 437 and 540

There is a significant association between codons 437 and 540 in parasites from all regions:

All regions	540E	540I	K540	540N	540Y	Total
A437	0	0	1024	0	0	1024
437G	2758	1	2686	742	2	6189
Total	2758	1	3710	742	2	7213

suggesting the following:

Rule: 540E predicts 437G Rule: 540N predicts 437G Rule: A437 predicts K540

Codons 436 and 437

There is a significant association between codons 436 and 437 in parasites from all regions:

All regions	A437	437G	Total
436A	454	1495	1949
436C	9	0	9
436F	13	53	66
436H	1	16	17
S436	491	4344	4835
436Y	9	0	9
Total	977	5908	6885

suggesting the following:

Rule: 436C predicts A437 Rule: 436Y predicts A437